Select Page

China Professional Brush Cutter Part Diameter 8 mm Drive Shaft Brushcutter Spare Part

Product Description

Brush Cutter Part diameter 8 mm Drive Shaft For BrushCutter

  

 

NO Model L- 1 (MM) A (MM) B (MM) Material Note
1 ESR-DS-80-1 80 A STYPE 26*9T A STYPE 26*9T 40CR  
2 ESR-DS-120-1 120 A STYPE 22*9T A STYPE 22*9T 40CR  
3 ESR-DS-120-2 120 A STYPE 22*9T C STYPE 24*5.3 40CR  
4 ESR-DS-135-1 135 A STYPE 22*9T C STYPE 22*5.35 40CR  
5 ESR-DS-135-2 135 A STYPE 22*9T A STYPE 22*9T 72B  
6 ESR-DS-330-1 330 A STYPE 22*9T A STYPE 22*9T 40CR  
7 ESR-DS-340-1 340 C STYPE 22*6.6 B STYPE 13*M7 40CR  
8 ESR-DS-388-1 388 A STYPE 26*9T A STYPE 26*9T 72B  
9 ESR-DS-469-1 469 A STYPE 22*9T A STYPE 22*9T 40CR  
10 ESR-DS-530-1 530 A STYPE 22*9T A STYPE 22*9T 40CR  
11 ESR-DS-600-1 600 A STYPE 26*9T A STYPE 26*9T 40CR  
12 ESR-DS-660-1 660 A STYPE 20*9T B STYPE 25*M8 40CR  
13 ESR-DS-675-1 675 A STYPE 23*9T B STYPE 21*M8 72B  
14 ESR-DS-685-1 685 A STYPE 22*9T B STYPE 26*M8 40CR  
15 ESR-DS-703-1 703 A STYPE 22*9T C STYPE 22*5.3 40CR  
16 ESR-DS-703-2 703 C STYPE 25*5.35 C STYPE 25*5.35 40CR  
17 ESR-DS-725-1 725 B STYPE 25*M8 B STYPE 25*M8 40CR  
18 ESR-DS-747-1 747 A STYPE 24*9T A STYPE 24*9T 40CR  
19 ESR-DS-750-1 750 A STYPE 20*9T B STYPE 25*M8 72B Spline 79.5X1.1X<P7.4
20 ESR-DS-751.5-1 751.5 A STYPE 27*7T B STYPE 20*M7 40CR Spline 138X1.1X<ll7
21 ESR-DS-755- 1 755 A STYPE 2 0*9T C STYPE 24*6.8 72B Spline 44.5X1.1X<D7.4
22 ESR-DS-755-2 755 A STYPE 2 0*9T B STYPE  25*M8 72B  
23 ESR-DS-755-3 755 A STYPE 22*9T A STYPE 22*9T 72B  
24 ESR-DS-757-1 757 A STYPE 20*9T B STYPE 25*M8 72B Spline 79.5X1.1X7.4
25 ESR-DS-757-2 757 A STYPE 20*9T C STYPE 24*6.8 72B Spline 94.5X1.1X7.4
26 ESR-DS-760.5-1 760.5 A STYPE 22*9T A STYPE 22*9T 40CR Spline 25X1.1X7
27 ESR-DS-762-1 762 A STYPE 22*9T A STYPE 22*9T 40CR  
28 ESR-DS-762-2 762 A STYPE 22*7T C STYPE 24*5.3 40CR  

NO Model L-1 (MM) A (MM) B (MM) Material Note
29 ESR-DS-762-3 762 A Style 22*7T A Style 22*7T 40CR  
30 ESR-DS-762-4 762 A Style 22*9T B Style 22*M8 72B  
31 ESR-DS-762-5 762 C Style 22*5.3 C Style 22*5.3 40CR  
32 ESR-DS-763-1 763 A Style 26*9T B Style 30*M8 40CR  
33 ESR-DS-765-1 765 A Style 26*9T C Style 25*6.8 40CR  
34 ESR-DS-772-1 772 A Style 22*9T A Style 22*9T 72B  
35 ESR-DS-773-1 773 A Style 20*9T C Style 24*5 72B  spline44.55X1.1X<P7.4
36 ESR-DS-782-1 782 A Style 22*9T B Style 24*M8 40CR  
37 ESR-DS-784-1 784 A Style 22*9T D Style <P12X22*9T 40CR  
38 ESR-DS-790-1 790 A Style 20*9T A Style 20*9T 40CR  
39 ESR-DS-790-2 790 A Style 22*9T C Style 22*5 72B  
40 ESR-DS-798.5-1 798.5 A Style 28*9T D Style <ll14X19*5.4 40CR  
41 ESR-DS-822-1 822 A Style 25*9T B Style 20*M8 40CR  
42 ESR-DS-832-1 832 A Style 24*9T B Style 15*M8 40CR  
43 ESR-DS-840-1 840 A Style 22*9T A Style 22*9T 40CR  
44 ESR-DS-846-1 846 A Style 24*9T B Style 18*M8 40CR  
45 ESR-DS-855-1 855 A Style 22*9T A Style 22*9T 72B  
46 ESR-DS-915-1 915 A Style 22*9T A Style 22*9T 40CR  
47 ESR-DS-948-1 948 A Style 22*9T A Style 22*9T 40CR  
48 ESR-DS-953-1 953 A Style 22*9T A Style 22*9T 40CR  
49 ESR-DS-965-1 965 A Style 22*9T A Style 22*9T 72B  
50 ESR-DS-1000-1 1000 A Style 22*9T A Style 22*9T 40CR  
51 ESR-DS-1015-1 1015 A Style 22*9T A Style 22*9T 40CR  
52 ESR-DS-1092-1 1092 A Style 22*9T A Style 22*9T 40CR  
53 ESR-DS-1222-1 1222 C Style 22*5.3 B Style 13*M7 40CR  
54 ESR-DS-1255-1 1255 A Style 22*9T D Style 13X26*7 40CR  
55 ESR-DS-1299-1 1299 A Style 22*9T B Style 13*M7 40CR  
56 ESR-DS-1322-1 1322 C Style 22*5.3 B Style 14*M7 40CR  
57 ESR-DS-1324-1 1324 A Style 30*9T B Style 25*M8 40CR  
58 ESR-DS-1330-1 1330 A Style 22*9T C Style 30*6.8 40CR  

59 ESR-DS-1350-1 1350 A Style 26*9T B Style 25*M8 40CR  
60 ESR-DS-1370-1 1370 A Style 24*9T B Style 25*M8 40CR  
61 ESR-DS-1375- 1 1375 A Style 22*9T A Style 22*9T 40CR  
62 ESR-DS-1380-1 1380 A Style 24*9T B Style 25*M8 40CR  
63 ESR-DS-1380-2 1380 A Style 24*7T B Style 25*M8 40CR  
64 ESR-DS-1380-3 1380 A Style 30*9T B Style 25*M8 40CR  
65 ESR-DS-1390-1 1390 A Style 22*9T A Style 22*9T 40CR  
66 ESR-DS-1390-2 1390 A Style 24*7T B Style 25*M8 40CR  
67 ESR-DS-1390-3 1390 A Style 24*9T B Style 25*M8 40CR  
68 ESR-DS-1390-4 1390 A Style 24*9T D Style 13X26*7 40CR  
69 ESR-DS-1398-1 1398 A Style 25*9T D Style 4>13X26*7 40CR  
70 ESR-DS-1405- 1 1405 A Style 24*9T D Style 13X26*7 40CR  
71 ESR-DS-1448-1 1448 A Style 22*9T C Style 22*5.35 40CR  

72 ESR-DS-1460-1 1460 AStyle 22*9T AStyle 22*9T 40CR  
73 JG-VZ-1469-1 1469 AStyle 30*9T BStyle 25*M8 40CR  
74 ESR-DS-1476-1 1476 CStyle 22*5.3 BStyle 13*M7 40CR  
75 JG-VZ-1480-1 1480 AStyle 22*9T AStyle 22*9T 40CR  
76 ESR-DS-1490-1 1490 AStyle 20*9T AStyle 20*9T 40CR  
77 ESR-DS-1500-1 1500 AStyle 26*9T AStyle 26*9T 40CR  
78 ESR-DS-1500-2 1500 AStyle 22*9T CStyle 30*6.8 40CR  
79 ESR-DS-1500-3 1500 AStyle 26*9T AStyle 26*9T 40CR  
80 ESR-DS-1510-1 1510 AStyle 26*9T AStyle 26*9T 40CR  
81 ESR-DS-1515-1 1515 AStyle 26*9T AStyle 26*9T 40CR  
82 ESR-DS-1517-1 1517 AStyle 22*9T AStyle 22*9T 40CR  
83 ESR-DS-1518-1 1518 AStyle 27*9T CStyle 27*5.35 40CR  
84 ESR-DS-1519-1 1519 AStyle 24*9T AStyle 24*9T 40CR  
85 ESR-DS-1522-1 1522 AStyle 22*9T AStyle 22*9T 40CR  
86 ESR-DS-1522-2 1522 AStyle 22*7T AStyle 22*7T 72B  
87 ESR-DS-1522-3 1522 AStyle 22*9T AStyle 30*9T 72B  
88 ESR-DS-1525-1 1525 AStyle 20*9T AStyle 25*9T 40CR  
89 ESR-DS-1526-1 1526 AStyle 24*9T AStyle 24*9T 40CR  
90 ESR-DS-1526.5-1 1526.5 AStyle 22*9T AStyle 22*9T 40CR  
91 ESR-DS-1530-1 1530 AStyle 26*9T AStyle 26*9T 40CR  
92 ESR-DS-1530-2 1530 AStyle 26*9T BStyle 25*M8 40CR  
93 ESR-DS-1530-3 1530 AStyle 26*7T AStyle 26*7T 40CR  
94 ESR-DS-1530-4 1530 CStyle 26*5.3 CStyle 26*5.3 40CR  
95 ESR-DS-1532-1 1532 AStyle 27*9T AStyle 27*9T 40CR  
96 ESR-DS-1534-1 1534 AStyle 24*9T AStyle 24*9T 40CR  
97 ESR-DS-1534- 2 1534 AStyle 24*9T BStyle 14*M8 40CR  
98 ESR-DS-1535- 1 1535 AStyle 25*9T BStyle 20*M8 40CR  
99 ESR-DS-1537- 1 1537 AStyle 25*9T BStyle 13*M8 40CR  
100 ESR-DS-1537- 2 1537 AStyle 25*9T BStyle 25*M8 40CR  
101 ESR-DS-1540-1 1540 AStyle 26*9T AStyle 26*9T 40CR  
102 ESR-DS-1542-1 1542 AStyle 31*9T BStyle 14*1*M8 72B  
103 ESR-DS-1545-1 1545 AStyle 28*10T AStyle 28*10T 40CR  
104 ESR-DS-1545- 2 1545 AStyle 22*9T CStyle 26*6.8 40CR  
105 ESR-DS-1546-1 1546 AStyle 26*9T AStyle 26*9T 40CR  
106 ESR-DS-1550-1 1550 AStyle 26*9T BStyle 25*M8 40CR  
107 ESR-DS-1550-2 1550 AStyle 26*9T AStyle 26*9T 40CR  
108 ESR-DS-1553-1 1553 AStyle 26*9T AStyle 26*9T 40CR  
109 ESR-DS-1555-1 1555 AStyle 26*9T DStyle cP1 3X26*7 40CR  
110 ESR-DS-1560- 1 1560 AStyle 28*10T AStyle 28*10T 40CR  
111 ESR-DS-1575- 1 1575 AStyle 26*9T DStyle CD13X26*7 40CR  
112 ESR-DS-1610-1 1610 CStyle 27*6.1 CStyle 27*6.1 40CR  
113 ESR-DS-1622-1 1622 AStyle 22*9T AStyle 22*9T 40CR  

FAQ:

 

Notice

1. We maintain high standards of customer satisfaction! Your feedback is very important to us. Before giving us neutral or negative feedback, please contact us to satisfactorily address your concerns.

2.  Please compare the good’s appearance, shape, size with your original parts before ordering.

3.  Due to the different color resolution settings of the display,  the CZPT may have a color difference, please know it.

4.  All our products are non-assembled, pictures are for reference only.

Problem with An Order?

We work hard to get everything right but mistakes happen and we want to fix them quickly, please ask any questions using the Made-in-China system before starting a dispute.

Feedback

We maintain high standards of CZPT and strive for 100% customer satisfaction! If you are not satisfied with our products or services please contact us first, sincerely hope through our cooperation, we can resolve the problems smoothly.

About Us

We do retail and wholesale for gasoline chainsaw, brush cutter, grass trimmer, and other garden tool parts. Welcome here to pick out and buy.

Contact

If you have questions or problems please leave messages, we will reply to you as soon as possible.

Certification: RoHS, CE, ISO, CCC
Power Source: Gasoline
Type: Drive Shaft
Material: Abcd Style
Diameter: 8mm
Drive Shaft Style: a/B/C/D
Customization:
Available

|

Customized Request

pto shaft

How do drive shafts handle variations in speed and torque during operation?

Drive shafts are designed to handle variations in speed and torque during operation by employing specific mechanisms and configurations. These mechanisms allow the drive shafts to accommodate the changing demands of power transmission while maintaining smooth and efficient operation. Here’s a detailed explanation of how drive shafts handle variations in speed and torque:

1. Flexible Couplings:

Drive shafts often incorporate flexible couplings, such as universal joints (U-joints) or constant velocity (CV) joints, to handle variations in speed and torque. These couplings provide flexibility and allow the drive shaft to transmit power even when the driving and driven components are not perfectly aligned. U-joints consist of two yokes connected by a cross-shaped bearing, allowing for angular movement between the drive shaft sections. This flexibility accommodates variations in speed and torque and compensates for misalignment. CV joints, which are commonly used in automotive drive shafts, maintain a constant velocity of rotation while accommodating changing operating angles. These flexible couplings enable smooth power transmission and reduce vibrations and wear caused by speed and torque variations.

2. Slip Joints:

In some drive shaft designs, slip joints are incorporated to handle variations in length and accommodate changes in distance between the driving and driven components. A slip joint consists of an inner and outer tubular section with splines or a telescoping mechanism. As the drive shaft experiences changes in length due to suspension movement or other factors, the slip joint allows the shaft to extend or compress without affecting the power transmission. By allowing axial movement, slip joints help prevent binding or excessive stress on the drive shaft during variations in speed and torque, ensuring smooth operation.

3. Balancing:

Drive shafts undergo balancing procedures to optimize their performance and minimize vibrations caused by speed and torque variations. Imbalances in the drive shaft can lead to vibrations, which not only affect the comfort of vehicle occupants but also increase wear and tear on the shaft and its associated components. Balancing involves redistributing mass along the drive shaft to achieve even weight distribution, reducing vibrations and improving overall performance. Dynamic balancing, which typically involves adding or removing small weights, ensures that the drive shaft operates smoothly even under varying speeds and torque loads.

4. Material Selection and Design:

The selection of materials and the design of drive shafts play a crucial role in handling variations in speed and torque. Drive shafts are typically made from high-strength materials, such as steel or aluminum alloys, chosen for their ability to withstand the forces and stresses associated with varying operating conditions. The diameter and wall thickness of the drive shaft are also carefully determined to ensure sufficient strength and stiffness. Additionally, the design incorporates considerations for factors such as critical speed, torsional rigidity, and resonance avoidance, which help maintain stability and performance during speed and torque variations.

5. Lubrication:

Proper lubrication is essential for drive shafts to handle variations in speed and torque. Lubricating the joints, such as U-joints or CV joints, reduces friction and heat generated during operation, ensuring smooth movement and minimizing wear. Adequate lubrication also helps prevent the binding of components, allowing the drive shaft to accommodate speed and torque variations more effectively. Regular lubrication maintenance is necessary to ensure optimal performance and extend the lifespan of the drive shaft.

6. System Monitoring:

Monitoring the performance of the drive shaft system is important to identify any issues related to variations in speed and torque. Unusual vibrations, noises, or changes in power transmission can indicate potential problems with the drive shaft. Regular inspections and maintenance checks allow for the early detection and resolution of issues, helping to prevent further damage and ensure the drive shaft continues to handle speed and torque variations effectively.

In summary, drive shafts handle variations in speed and torque during operation through the use of flexible couplings, slip joints, balancing procedures, appropriate material selection and design, lubrication, and system monitoring. These mechanisms and practices allow the drive shaft to accommodate misalignment, changes in length, and variations in power demands, ensuring efficient power transmission, smooth operation, and reduced wear and tear in various applications.

pto shaft

How do drive shafts enhance the performance of automobiles and trucks?

Drive shafts play a significant role in enhancing the performance of automobiles and trucks. They contribute to various aspects of vehicle performance, including power delivery, traction, handling, and overall efficiency. Here’s a detailed explanation of how drive shafts enhance the performance of automobiles and trucks:

1. Power Delivery: Drive shafts are responsible for transmitting power from the engine to the wheels, enabling the vehicle to move forward. By efficiently transferring power without significant losses, drive shafts ensure that the engine’s power is effectively utilized, resulting in improved acceleration and overall performance. Well-designed drive shafts with minimal power loss contribute to the vehicle’s ability to deliver power to the wheels efficiently.

2. Torque Transfer: Drive shafts facilitate the transfer of torque from the engine to the wheels. Torque is the rotational force that drives the vehicle forward. High-quality drive shafts with proper torque conversion capabilities ensure that the torque generated by the engine is effectively transmitted to the wheels. This enhances the vehicle’s ability to accelerate quickly, tow heavy loads, and climb steep gradients, thereby improving overall performance.

3. Traction and Stability: Drive shafts contribute to the traction and stability of automobiles and trucks. They transmit power to the wheels, allowing them to exert force on the road surface. This enables the vehicle to maintain traction, especially during acceleration or when driving on slippery or uneven terrain. The efficient power delivery through the drive shafts enhances the vehicle’s stability by ensuring balanced power distribution to all wheels, improving control and handling.

4. Handling and Maneuverability: Drive shafts have an impact on the handling and maneuverability of vehicles. They help establish a direct connection between the engine and the wheels, allowing for precise control and responsive handling. Well-designed drive shafts with minimal play or backlash contribute to a more direct and immediate response to driver inputs, enhancing the vehicle’s agility and maneuverability.

5. Weight Reduction: Drive shafts can contribute to weight reduction in automobiles and trucks. Lightweight drive shafts made from materials such as aluminum or carbon fiber-reinforced composites reduce the overall weight of the vehicle. The reduced weight improves the power-to-weight ratio, resulting in better acceleration, handling, and fuel efficiency. Additionally, lightweight drive shafts reduce the rotational mass, allowing the engine to rev up more quickly, further enhancing performance.

6. Mechanical Efficiency: Efficient drive shafts minimize energy losses during power transmission. By incorporating features such as high-quality bearings, low-friction seals, and optimized lubrication, drive shafts reduce friction and minimize power losses due to internal resistance. This enhances the mechanical efficiency of the drivetrain system, allowing more power to reach the wheels and improving overall vehicle performance.

7. Performance Upgrades: Drive shaft upgrades can be popular performance enhancements for enthusiasts. Upgraded drive shafts, such as those made from stronger materials or with enhanced torque capacity, can handle higher power outputs from modified engines. These upgrades allow for increased performance, such as improved acceleration, higher top speeds, and better overall driving dynamics.

8. Compatibility with Performance Modifications: Performance modifications, such as engine upgrades, increased power output, or changes to the drivetrain system, often require compatible drive shafts. Drive shafts designed to handle higher torque loads or adapt to modified drivetrain configurations ensure optimal performance and reliability. They enable the vehicle to effectively harness the increased power and torque, resulting in improved performance and responsiveness.

9. Durability and Reliability: Robust and well-maintained drive shafts contribute to the durability and reliability of automobiles and trucks. They are designed to withstand the stresses and loads associated with power transmission. High-quality materials, appropriate balancing, and regular maintenance help ensure that drive shafts operate smoothly, minimizing the risk of failures or performance issues. Reliable drive shafts enhance the overall performance by providing consistent power delivery and minimizing downtime.

10. Compatibility with Advanced Technologies: Drive shafts are evolving in tandem with advancements in vehicle technologies. They are increasingly being integrated with advanced systems such as hybrid powertrains, electric motors, and regenerative braking. Drive shafts designed to work seamlessly with these technologies maximize their efficiency and performance benefits, contributing to improved overall vehicle performance.

In summary, drive shafts enhance the performance of automobiles and trucks by optimizing power delivery, facilitating torque transfer, improving traction and stability, enhancing handling and maneuverability, reducing weight, increasing mechanical efficiency, enabling compatibility with performance upgrades and advanced technologies, and ensuring durability and reliability. They play a crucial role in ensuring efficient power transmission, responsive acceleration, precise handling, and overall improved performance of vehicles.

pto shaft

Are there variations in drive shaft designs for different types of machinery?

Yes, there are variations in drive shaft designs to cater to the specific requirements of different types of machinery. The design of a drive shaft is influenced by factors such as the application, power transmission needs, space limitations, operating conditions, and the type of driven components. Here’s an explanation of how drive shaft designs can vary for different types of machinery:

1. Automotive Applications:

In the automotive industry, drive shaft designs can vary depending on the vehicle’s configuration. Rear-wheel-drive vehicles typically use a single-piece or two-piece drive shaft, which connects the transmission or transfer case to the rear differential. Front-wheel-drive vehicles often use a different design, employing a drive shaft that combines with the constant velocity (CV) joints to transmit power to the front wheels. All-wheel-drive vehicles may have multiple drive shafts to distribute power to all wheels. The length, diameter, material, and joint types can differ based on the vehicle’s layout and torque requirements.

2. Industrial Machinery:

Drive shaft designs for industrial machinery depend on the specific application and power transmission requirements. In manufacturing machinery, such as conveyors, presses, and rotating equipment, drive shafts are designed to transfer power efficiently within the machine. They may incorporate flexible joints or use a splined or keyed connection to accommodate misalignment or allow for easy disassembly. The dimensions, materials, and reinforcement of the drive shaft are selected based on the torque, speed, and operating conditions of the machinery.

3. Agriculture and Farming:

Agricultural machinery, such as tractors, combines, and harvesters, often requires drive shafts that can handle high torque loads and varying operating angles. These drive shafts are designed to transmit power from the engine to attachments and implements, such as mowers, balers, tillers, and harvesters. They may incorporate telescopic sections to accommodate adjustable lengths, flexible joints to compensate for misalignment during operation, and protective shielding to prevent entanglement with crops or debris.

4. Construction and Heavy Equipment:

Construction and heavy equipment, including excavators, loaders, bulldozers, and cranes, require robust drive shaft designs capable of transmitting power in demanding conditions. These drive shafts often have larger diameters and thicker walls to handle high torque loads. They may incorporate universal joints or CV joints to accommodate operating angles and absorb shocks and vibrations. Drive shafts in this category may also have additional reinforcements to withstand the harsh environments and heavy-duty applications associated with construction and excavation.

5. Marine and Maritime Applications:

Drive shaft designs for marine applications are specifically engineered to withstand the corrosive effects of seawater and the high torque loads encountered in marine propulsion systems. Marine drive shafts are typically made from stainless steel or other corrosion-resistant materials. They may incorporate flexible couplings or dampening devices to reduce vibration and mitigate the effects of misalignment. The design of marine drive shafts also considers factors such as shaft length, diameter, and support bearings to ensure reliable power transmission in marine vessels.

6. Mining and Extraction Equipment:

In the mining industry, drive shafts are used in heavy machinery and equipment such as mining trucks, excavators, and drilling rigs. These drive shafts need to withstand extremely high torque loads and harsh operating conditions. Drive shaft designs for mining applications often feature larger diameters, thicker walls, and specialized materials such as alloy steel or composite materials. They may incorporate universal joints or CV joints to handle operating angles, and they are designed to be resistant to abrasion and wear.

These examples highlight the variations in drive shaft designs for different types of machinery. The design considerations take into account factors such as power requirements, operating conditions, space constraints, alignment needs, and the specific demands of the machinery or industry. By tailoring the drive shaft design to the unique requirements of each application, optimal power transmission efficiency and reliability can be achieved.

China Professional Brush Cutter Part Diameter 8 mm Drive Shaft Brushcutter Spare Part  China Professional Brush Cutter Part Diameter 8 mm Drive Shaft Brushcutter Spare Part
editor by CX 2023-11-17